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OPTIMAL CURE CYCLE DESIGN
OF A RESIN-FIBER COMPGSITE LAMINATE

Jean W. Hou™ and Jeenson Sheen™™
01d Dominion University, Norfolk, VA 23508
ABSTRACT

High performance polymeric composites have been experiencing
increasing usage in the aerospace and automobile industries. Such
materials are commonly composed of long or chopped fibers embedded in
the thermosetting resin matrix. Changes 1in physical and chemical
properties of such composite materials during the cure process are
rather complex. Thus, it is not a trivial task to properly design a
cure cycle (temperature and pressure profiles) for a cure process. The
material should be cured uniformly and completely with the lowest void
content; the temperature inside the 1laminate must not exceed some
maximum value; and the cure process should be completed within the
shortest amount of time. In the past, most cure cycle designs for newly
developed composite systems are based upon the technique of trial and
error, Such approach has long been recognized as costly and
inefficient. Several simulation models have been developed recently for
curing various epoxy matrix composites. This development represents a
significant advancement in computerizing the cure cycle design. The

next quest comes naturally to be the search of the "best" cure cycle for
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a given composite laminate. The major thrust of this thesis is to study

a unified Computer-Aided Design method for the cure cycle design that
incorporates an optimal design technique with the analytical model of a
composite cure process. The preliminary results of using this proposed
method for optimal cure cycle design are reported and discussed in this
thesis.

The cure process of interest is the compression molding of a
polyester which is described by a diffusion-reaction system. The finite
element method is employed to convert the initial-boundary value problem
into a set of first order differential equations which are solved
simultaneously by the DE program. The equations for thermal design
sensitivities are derived by using the direct differentiation.method and
are so]véd by the DE progranm. Finally, a recursive quadratic
programming algorithm with an active set strategy called a linearization
method is used to optimally design the cure cycle, subjected to the
given design performance requirements. The difficulty of casting the
cure cycle design process into a proper mathematical form is recognized
in this study. Various optimal design problems are formulated to
address these aspects. The optimal solutions of these formulations are
compared and discussed, and the major parameters which play major roles

in the cure cycle design for a given composite laminate are identified.
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CHAPTER 1
INTRODUCTION

Continuous fibers reinforced polymeric composites are used in many
applications where high strength and low weight are important, such as
in the aerospace industry. These composites are produced by embedding
long or chopped high strength reinforcing fibers in a polymeric
matrix. The matrix is important not only for transferring the load
between fibers, but also for providing resistance to fracture in the
composite and to distortions caused by the environment. One means to
manufacture the composite'1aminate with continuous fiber is by combining
unidirectionally oriented layers of fibers pre-impregnated with the
uncured resin matrix and subsequently laying these up in the desired
directions. This pre-impregnated composite precursor is called a
prepreg. The composite parts and structures are then manufactured by
curing the prepreg material. The cure process 1is accomplished by
exposing the prepreg material to the elevated temperatures and pressures
for a predetermined length of time. These elevated temperatures and
pressures to which the prepreg material is subjected are referred to as
the cure temperature and the cure pressure. The cure temperature
provides the heat required for initiating and maintaining the chemical
reactions in the resin during the cure process. Once the reactive
matrix resin 1is heated, polymerization reactions start to occur.

Polymer chains are extended and later crosslinked. Interactions between




the heat generated from the reactions and the heat transmitted by
conduction and convection from the surrounding environment create a
highly non-linear chemoviscosity profile which can dictate the resin
flow characteristics during the cure process. After the resin is
melted, by applying the cure pressure, the excess resin is squeezed out
of the material. Consequently, the individual plies are consolidated
and the vapor bubbles are compressed,

The magnitudes and durations of the cure temperature and the cure
pressure applied during the cure process have significant consequences
on the performance of the finished product. It is not a trivial task to
design a proper cure cycle, that is, to determine a cure temperature and
a cure pressure, due to the complex nature of the changes in physical
and chemical properties of the composite material during the cure
process. The composite material should be cured uniformly and
completely with the lowest void content; temperatures inside the
laminate must not exceed some maximum value; and the curing process
should be completed in the shortest amount of time [1]. In the past,
the cure cycle is selected empirically for newly developed composite
systems. This trial and error type of empirical approach has long been
recognized as costly and inefficient. The shortcomings of the empirical
approach could be overcome, however, by the use of an analytical
model, The recently developed model for curing epoxy matrix composites
by Loos and Springer [1] represented a significant advancement in this
aspect. The cure cycle can now be designed in a systematic manner to
meet the major considerations mentioned earlier for various composite
resin/fiber systems. As for the composite with chopped fibers, its

manufacturing process [2] may be different from the one stated above.



However, the process can still be characterized similarly by the resin
flow, chemical kinetics, chemoviscosity, etc. The considerations in the

selection of the proper cure cycle are also very similar.
1.1 Objective and Motivation

As mentioned above, currently the method for the cure cycle design
is a type of parametric study conducted by either physical experiments
or numerical simulation [1,2]. This type of approach is costly and
inefficient; and the true optimal condition may never be found.
Therefore, the development of a wunified and systematic approach to
obtain an "optimal" cure cycle for a given composite material is
needed. In this study, a unified Computer-Aided Design (CAD) method is
proposed, which incorporates an optimal design technique with an
analytical model of a composite cure process.

The optimization technique is not new and has been successfully
applied to many transient problems 1in various disciplines such as
mechanical systems [3], structural dynamics [4], chemical process
control [5], and optimal control [6]. However, to the author's
knowledge, the application of optimization technique to the cure cycle
design has never been studied before. The goal of this study is to
exploit the potential of applying the optimization technique to the cure
cycle design.

As an initial attempt at this goal, this study is concentrated on
the optimal design of the cure temperature only. The press molding
process of a polyester [2] is used as an example. Various optimization
formulations for the cure cycle design are suggested. Their optimal

solutions are obtained by using the integrated computer program which is




developed for the simulation of a heat conduction model coupled with a
chemo-kinetic model during the process and for the optimization of the
cure cycle design. Those optimization formulations are evaluated based
on their performances and merits. The experience gained from this study
is very 1important and valuable for the further application of the
proposed CAD approach to a more realistic composite manufacturing

process.
1.2 Scope of the Present Work

The major contents of this thesis are Thermal Analysis, Thermal
Design Sensitivity Analysis, and Optimal Cure Cycle Design. The
considerations of the computational formulation of the reaction-
diffusion system are reported in the next chapter. The finite element
discretization 1is introduced to convert the initial-boundary value
problem into a set of first order differential equations. These
equations are then solved simultaneously by the DE program [7]. To
verify the computational procedure, the numerical results of examples
are compared with the analytical solutions or the solutions found in the
literature [2,8,9,10].

In Chapter 3, two methods, the adjoint variable method and the
direct differentiation method, have been studied for the thermal design
sensitivity analysis. It is concluded that the direct differentiation
method is superior to the adjoint variable method in terms of accuracy
and physical interpretation. Once the information of design sensitivity
is provided accurately, any gradient-based mathematical programming

algorithm can be applied to generate the optimal design iteratively.




In Chapter 4, an iterative scheme is outlined to determine the best
cure process. Numerical calculations are carried out by using the
finite element method for analysis and a recursive quadratic programming
technique for optimization. The results of the optimal cure cycle
design for various formulations of objective functions are also

presented.

Finally, remarks and conclusions of the present work are given in

Chapter 5.



CHAPTER II

THERMAL ANALYSIS

One major step of manufacturing composite materials which consist
of thermosetting resin matrix is using the elevated temperature and
pressure to cure the materials. The analytical model of such a cure
process is rather complicated. Such an analytical model should be able
to address:

a) the heat transmission between the surrounding environment and
the material,
b) the temperature distribution within the material,
c) the heat generated by the chemical reaction of the resin,
d) the phase change of the resin characterized by its
chemoviscosity, and
e) the non-newtonian flow problem associated with the cure pressure
and the liquidized resin.
Among others, the major parameters which play important roles in
modelling the cure process may be identified as the temperature, the
degree of cure of the resin, the resin viscosity, the resin flow
velocity, the thickness of the processing material and the material
properties, such as density, heat conductivity, etc. Most parameters
are varied with respect to the time and spatial location.
To focus on the optimization aspects of study, several assumptions

which simplify the formulation of the cure process are introduced. One



is that the temperature and the degree of cure of the composite material
are uniformly distributed in a plane parallel to the tool plates. As a
result, the parameters of the problem are functions of the time and the
position along the thickness of the composite only. Secondly, the resin
content in the material is assumed to be low so that only a small amount
of resin will be squeezed out of the material. Consequently, the resin
flow model as well as the pressure cycle can be neglected from
considerations. Furthermore, the material properties which depend on
the fiber-resin ratios can be assumed to be constant as well. Finally,
it is assumed that there is no deviation between the cure temperature
and the temperature on the surfaces of the material adjacent to the tool
plates. Thus, the cure temperature can be considered as the boundary
temperature of the material. The temperature distribution and the
degree of cure are the only two state variables which are governed by a
diffusion-reaction system. After simplification, the diffusion-reaction
system can be used to describe the cure process of a continuous fiber
composite with low resin content [8], and the cure process of a
composite with the chopped fibers [2]. The interest of this study,
however, is 1in compression molding of a filled polyester resin
reinforced by chopped glass fibers. The unmolded composite is produced
in sheets which are from 3 to 6 mm thick, typically.  The resin consists
of a thick dough and the chopped fibers (about 25 mm long) which are
randomly oriented in the plane of the sheet. In this form, the material

is called sheet molding compound, or simply SMC,




2.1 Diffusion-Reaction System

A diffusion-reaction system consists of an one-dimensional unsteady
heat-conduction equation with its boundary and initial conditions, and a
kinetic model of the cure rate of the resin. By using the finite
element method and a numerical integrator, a computational algorithm is
developed to analyze the thermo~chemical reaction. The numerical
results of several examples are obtained by the developed scheme and
compared with the existing solutions.

The temperature distribution T(z,t) and the degree of cure a(z,t)
of the resin inside the composite depend on the réte which heat is
transmitted from the environment intoc the material. The temperature
inside the composite can be calculated by using the law of conservation
of energy together with an appropriate expression for the cure
kinetics. By neglecting energy transferred by convection, the energy

equation may be expressed as

pcT = kT”” + pHra (2.1)

with the boundary conditions,

T° (0,t) = 0, 0<t<t, (2.2.a)
T(h,t) = Tc(t) - 0<t<n, (2.2.b)

and the initial condition,
T(z,0) = To(z), 0<z<h (2.3)

where p and ¢ are the density and the specific heat of the composite
material, respectively, k is the thermal conductivity in the direction

perpendicular to the plane of composite material, and 2h is the total



thickness. The temperature and the total or ultimate heat of reaction
during the cure process are denoted by T and Hr, respectively.
Moreover, the dot "+" on the top of a symbol indicates the time

ne.n

derivative and the superscript denotes the spatial derivative.
According to the assumptions discussed previously, all coefficients in
£Eqs. (2.1) =~ (2.3) are treated as constants. Note that the cure
temperature Tc(t) appears in the equation of the boundary condition Egs.
(2.2); and the 1last term in Eq. (2.1), pHra, is the rate of heat
generated by the chemical reaction characterized by the state of cure
¢ 4%

The state of cure depends strongly on the resin temperature. An
empirical expression is usually employed to address the relation between
the state of cure and the resin temperature. The degree of cure is

defined as

@ = H(t)/Hr (2.4)

where H(t) is the heat evolved from the beginning of the chemical
reaction of resin to some intermediate time t. Both H(t) and Hr in Eq.
(2.4) can be measured experimentally by, as an example; Differential
Scanning Cglorimetry (DSC). For an uncured material, a approaches to
zero, and for a completely cured material, a approaches to one. For
example, the cure rate equatioﬁ of a stepwise isothermal cure process,

can be defined for a polyester as follows

a = f(a,T)
= (Kp+ Kzam)(l -
= (ale_dl/RT + aze'dZ/RT M1 - )" (2.5)



where as 2, dl’ d2’ m, and n are constants, R is the universal gas
constant, and K; and K, are exponential functions of the temperature.
This example is taken from the research of compression molding conducted
at the General Motors Research Laboratory [2].

Some observations of interest are stated as follows:

1. The state equations of the cure process are coupled with two state
variables, namely, the temperature distribution T(z,t) and the degree of
cure a{z,t).
2. The non-homogeneous boundary value, Tc(t), is to be considered as
the design variable.

By using the following replacement of the temperature T(z,t)
as

T(z,t) = T{z,t) + T (1), (2.6)

the heat-conduction problem stated in Eqs. (2.1) - (2.3) can be

simplified as an equation of T(z,t)

[ ]
»

pcf = kT - pcf‘C + pHrf(a,f,TC), (2.7.a)

with the homogeneous boundary conditions,

T (0,1)

T(h,t)

o, 0<t<T, (2.7.b)

0, 0<t<, (2.7.c)
and the initial condition,
T(z,0) = T (2) - T (0), 0<z<h (2.7.d)

where f is defined in Eq. (2.5). From here on T is abbreviated as T for

further simplification. Because the initial temperature T,(z) is the

10




same as the initial cure temperature for most applications, the Egs.
(2.7) may have a homogeneous initial condition as well. Note also that
the cure kinetics of the polyester are expressed in terms of the
absolute temperature. Thus, the Kelvin's degree is used in this study

as the unit of temperature.
2.2 Finite Element Model

The finite element discretization is introduced herein to convert
the initial-boundary value problem, Egqs. (2.5) and (2.7), into a set of
first order differential equations. These equations are then solved
simultaneously by a numerical integration code called DE [7].

The quadratic and linear polynomials are used to interpolate the
states of the temperature and the degree of cure, respectively. The
notations T2i-1’ T2i’ and as denote the temperature, the temperature
gradient and the degree of cure, respectively, at node i as shown in
Fig. 2.1.

There are two degrees of freedom assigned at each node to
approximate the temperature distribution. The interpolation functions

of the temperature in each element are then defined as follows

1-3 2212 + 2 2343

=
—
-
N
el
n

3,,2

-z + 2 22/1 - 2z

=
N
——
N
el
n

/2
(2.8)
Ny(z) = 3 2°/2% - 2 22783

22/1 - 23/12

=
~
—
N
o
1}
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where the notation of & is the length of an element. Hence the

temperature within an element is then given as

T, (1)
TZ(t)
T(z,t) = (N, (2), Ny(2z), Ny(z), Ny(2)} 4 (t) |
3
T,(t)
=T (2.9)

As for the degree of cure, each node has one degree of freedom. The

interpo]atibn functions are defined as

L1 (z) =1 =~2/2

(2.10)
L

(z) = z/2

2

where 2 is the length of an element. Hence, the degree of cure within

an element is defined as
al(t)

a(Z,t) = {Ll(z)’ LZ(Z)} { }
az(t)

=L « (2.11)

- Note that the shape functions employed here for the temperature
distribution and the state of cure are the same as those for an elastic
beam and a truss, respectively.

Equations (2.7.a) and (2.5) provide integral identities for any

arbitrary testing functions u(z) and v(z):

12



h
0 =/ (pcT - kT”" + pcfC - oHrf) udz
[0}
h . X
= [ (pcTu + kT"u” + chcu - pHrfu) dz - kT-u o
0
NE Fiel .
=3 | (ocTu + kT*u” + pcT u - pHrfu) dz (2.12)
and 1z, ¢
1
h.
0=/ (a-f)vdz
0
NE %i+1 |
=z f (e = f) v dz (2.13)
1 z.

1

Where the testing function u(z) has to satisfy the kinematic boundary
condition, Eq. (2.7.c) and NE denotes the number of elements. The
boundary terms of Eq. (2.12) drop because of wu(h) =0, and T°(0,t) = 0.
The last equality in Eq. (2.13) indicates that the domain (0<z<h) has
been divided into NE finite elements. Considering any interpolation
functions Nj and Lj defined previously as the testing functions u(z),
and v(z), respectively, and using Egs. (2.9) and (2.11), one can

establish two matrix equations for the nodal temperature and the nodal

degree of cure as

pclCIT + KIKIT + pcbT = 0(a,T,T ), (2.14.a)

[Ma = R(e,T,T ) (2.14.b)

with the boundary conditions,

13




T

T = {0, T,(0), T3l0), *+2, T, _,(0), O} (2.14.c¢)

= L N T =
where the unknowns are vectors T = {Tl, T2, s T2n} and a = {al,az,

T
.es an}

for n = NE + 1 as the total number of nodes. Note that Tl(t)
and TZn(t) are always zeros in the analysis according to the boundary
conditions, T(h,t) = 0 and T° (0,t) = 0, respectively. The initial

conditions for each of the components in T and « are

T21‘-1 (0) = TRoom - Tc(o)’
TZi (0) =0,
and
a].(O) =0

where i is the nodal number, and T,;_; and Ty; are corresponding to the
temperature and the temperature gradient at the node i. Moreover, Tpoom
represents the temperature of the composite at the onset of the cure
process that is usually uniformly distributed. The detailed derivation
of the matrix equations, Eq. (2.14), is given in Appendix A. The above
equations, coupled with each other through the non-linear terms on the
right side of Eq. (2.14), can be solved simultaneously by using a
computer code called DE.

The DE program is one of predictor-corrector integration algorithms
using Adams family of formulas. The truncation error is controlled by
varying both the step size and the order of the polynomial approxi-
mation. The truncation error of the solution Z,,; at time step t,,; is

required by the DE program to satisfy the following relation:

|trunc| < ABSERR + RELERR -

zn]
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where Z. 1is the solution of the differential equation at t,, and the
values ABSERR and RELERR are supplied by the user.

The DE program is quite easy to be used and has the capability to
manage moderate stiff equations which happen commonly in the problems of
chemical kinetics. To maintain a unified accuracy in the analysis, the
computation of two state variables, namely, the temperature and the

degree of cure, are subjected to the same error tolerance in this study.

2.3 Numerical Examples

In this section, three examples have been studied. The numerical
results are in a very good agreement with the theoretical solution in
example one, and with the numerical solution reported in the literature
[2,8,9,10] in example two and three.

Example 1l: one-dimensional heat conduction with prescribed end
temperature,

This problem can be described by the following equation,

pcT = kT°° (2.15)

with the boundary conditions,

T2 (0,t) =0, 0<t< T,
T (h,t) =0, 0<t<r,

and the initial condition,
T(z,0) = To’ 0<z<h,

The exact solution of this problem [9] is given as

= 4To ntz - (n2ﬂ:2kt/ C,QZ)
T (z,t) =) — Sin —e P (2.16)
nn 1
n=1,3,5...

where the notation & is the’ total thickness 2h.
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The finite element problem is solved with £ = 10, k = 1, pc =1,
and T0 = 100. Twenty equal-spaced elements are used. Both the finite
element and the exact solution are shown in Fig. 2.2 for the time grids
t = 4,0, 8.0, 12.0, 16.0, 20.0, respectively. Note that a very good
agreement exists between the finite element solution and the exact
solution.

Example 2: one-dimensional heat conduction problem coupled with a
given chemical-kinetic model [2].

This example simulates the compression modelling of composite
laminates with its thickness 10 mm. The initial (material) temperature
is 298°K and the cure temperature is taken as a constant temperature,
i.e., To(t) = 423°K. This problem is described by Egs. (2.1) - (2.3).
The coefficients of this problem are given in Table 2.1.

Using the finite element method to solve this problem, sixteen
elements are used. The finite element results of the temperature
distribution and the degree of cure compared with the results of the
General Motor Research report [2] are given in Fig. 2.3 and Fig. 2.4,
respectively. Solid curves are from the General Motor Research report;
the dash lines are calculated by Eq. (2.14). This example also shows a
good agreement between the calculated data and that of the General Motor

Research report.

Example 3: one-dimensional heat conduction problem coupled with a
given-kinetic model of thick-section autoclave cured composites [8,10].
One simulates the autoclave processing of 192 ply prepregs with 32%
Hercules resin content, The resin flow can be neglected in this
example, because the resin content is Tow. To focus on the heat

conduction and the chemical-kinetic models, the measured temperature on

16
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the surface of the composite laminate 1is wused as the boundary
temperature, instead of the temperature of the cure cycle. Although the
heat flux, induced by the heat convection of autoclave air temperature,
is neglected, the numerical result is in excellent agreement with Loos'

data [10], as shown in Fig. 2.5.



CHAPTER III
THERMAL DESIGN SENSITIVITY ANALYSIS

The derivatives of functionals of responses with respect to the
design variables are often referred to as design sensitivity
derivatives. Most general optimization algorithms require such
derivatives which can be used to approximate constraints and to choose a
search direction to obtain a set of improved design variables. It is
then needed to have a reliable means to calculate the design sensitivity
derivatives.

Two commonly used methods for design sensitivity analysis, namely,
the adjoint variable method and the direct differentiation method, are
studied in this chapter. The comparisons of numerical results obtained
by these two methods demonstrate that the direct differentiation method

is a better choice for this study.
3.1 Techniques of Thermal Design Sensitivity Analysis

As discussed previously, the cure uniformity and completeness for
the cure cycle design. However, it is difficult to cast the measurement
of the cure uniformity and completeness in a precisely mathematical
form., To focus on the study of thermal design sensitivity analysis in
this section, the cure uniformity is simply represented by the least-
squared integral of the deviation between the pointwise temperature and

the averaged temperature as
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T h 2 h 2
o =[ [f TSdz - (/] T dz)°/h] dt. (3.1)
0
0o 0 0
The above functional defines a global sense of temperature uniformity
across the thickness of the composite during the cure process. It is
expected that the temperature uniformity yields the cure uniformity.
Other mathematical expressions of the cure uniformity are to be
discussed in the following chapter of optimal cure cycle design. On the
other hand, the following pointwise inequality may be used to force the

cure reaction to be completed at the end of the cure process.

a(z,t) > «a 0<z<h (3.2)

f’

where t© is the total time interval of the cure process and e is a
constant assigned to indicate the completeness of the degree of cure.

The numerical techniques to calculate the design derivatives of the

d¢
0 d
functional ¢o and the state variable a, — and —E, are to be addressed

db db
hereafter. Note that the design variable b is a parameter associated
with the cure temperature profile.

In general, there are four ways to calculate the thermal design
derivatives, namely, the finite difference method, the Greene's function
approach, the direct differentiation method (the behavior space
approach), and the adjoint variabie method (the dummy load method). The
last two methods are often mentioned in the literature [3,4,11,12].
Both methods lead to a set of linear equations that have a similar
structure to the original system.

The computational efforts regarding the direct differentiation

method and the adjoint variable method depend mainly on the numbers of

constraints and design variables of concern. The direct differentiation
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method requires the solution of a differential equation for each design
variable, while the adjoint variable method requires the solution of an
adjoint equation for each constraint. Consequently, the direct
differentiation method 1is more efficient to calculate the design
derivatives than the adjoint variable method when the number of design
variables is smaller than the number of constraints, or vice versa.

It is also known that the direct differentiation method provides
equations of design derivatives which have exactly the same differential
operator as that of the original equations. The equations of design
derivatives can, therefore, be solved simultaneously with the original
system equations subjected to the same numerical error tolerance.
Furthermore, without extra efforts, the vresults of the direct
differentiation approach provide the histories of design derivatives of
functionals and state variables. This information is very useful for a
designer to reconstruct the design space. One may check this
information to see whether a design variable of concern attributes to
the perturbation of the functional of concern consistently over a long

or just a limited period of time.

3.2 The Adjoint Variable Method

The problem of interest is to derive a set of equations for
computing the design sensitivities of a functional and the state
variables. The variation of a function ¢ with respect to a design

variable b is defined as
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b(t,b+edb) - ¢(t,b)

Tim s

E>0

&¢

de (t,b+edb)
de g=

= ¢~ &b (3.3)

where &b is the perturbation of design variable and ¢° is defined as
{ﬁg. The variations of state variables can be defined by a similar
fashion., Using the functional defined in Eq. (3.1) as an example, the

variation of this functional is then given as

T h 2 h
s8¢ = [ [[ ot -5/ T dz] &T dz dt. (3.4)
0 0 0

The governing equations of the diffusion-reaction system defined in

Eqs. (2.5) and (2.7) are
pcf = kT*~ - pc'I:c + pHrf(a,T,TC),

a = fla,T,T ).
C

For arbitrary functions A(z,t) and s(z,t) it is evident that

T h
0=/ [ AlpcT + pcT_ - KT*” - ohirf) dz dt, (3.5)
o 0
and
T h .
0=/, [ S(a-f) dz dt. (3.6)

o o

21




22

The variations of these equations yield

T h

0=/ (PC5%7\ + PC51"CX - péT”“\ - pHr :—Z Sai
(o] o]
of af
- pHr = 8TA = pHr —— 6T ) dz dt, (3.7)
C
and
h
0= IT [ (Ssa - S —f sa-52f o1 - s _f.aT ) dz dt. (3.8)
o o T 3T

Integrating by parts, the above equations can be rewritten as

T h
o af . f
0=/ [ [(-pch-kr"“-pHr:r 3-T-)st + (-pch per‘ET) 8T,
o o0 C
of * h
- pHrA — da] dz dt + [ kAa” 8T| dt
0 0
T h h T h T
- [ KkAST?| dt + [ pcAST| dz + | peAST [ dz, (3.9)
0 0 0 0 0 0
and h
T
af df of
= '-——6'———
0=/ f (-S6a - S @-S—= & -5 T 8T ) dz dt
g O
h T
+ [ S 8af dz. (3.10)
0 0

Adding Egs. (3.4), (3.9), and (3.10) up, one has the variation of the

functional ¢ as
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T h h
2 . .. of _ of
s¢ = [ [ [(eT- = J Tdz) - pch - kA pHr — =S ﬁ]éT dz dt
[0 o] 0
T h
of . of
+ [ [ (- pHrA — - S - S 32) s dz dt
0 o]
T h
. of of
-pCA - A = S e
+ [ [ ( -pc PHIA == = S — ) 8T dz dt
0O 0 (o] C

h T T h T h
+ peAST [ dz + [ KA“6T| dt - [ KkrsT”| dt
(0] 0 (o] 0 0
h T h T
+ f pcAST | dz + [ S sa| dz. (3.11)
o] 0 (o) 0

Note that A(z,t) and s(z,t) are arbitrary functions, and the only
two unknowns in the above equation are the design derivatives &T and
da. One may now specify the variables A and s in such a way that all
terms associated with 8T and Sa are dropped. This can be accomplished

by introducing the following adjoint equations for A and s:

h
. . af df 2
0 = pch + kA”” + pHr 57 S'ST (2T T [ Tdz), (3.12)
0
and
o af df
0=S8+ pHr}\E + S E (3.13)

with the terminal conditions,

Az,t) = 0, 0<z<h, (3.14)
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s(z,t) = 0, 0<z<h, (3.15)

and the boundary conditions,

A“(0,t) = 0, 0<t<, (3.16)

A(h,t)

0, 0<t<r, (3.17)

Then, the combination of Egs. (3.11) - (3.17) provides a simple formula

for the design derivative of the functional,

Tt h
. of of

&b = - pCA - —_—- 5 =

o= [ (-opc oHr — SaT)éTcdzdt
0O O C C
h

+ [ pcilo) 5Tc(o) dz . (3.18)

0

FEquation (3.18) shows that the design derivative of ¢ , namely,
&y, is a functional of state variables awand T, and the adjoint
variables A and s. The aand T can be solved by the finite element
method as discussed in Chapter 2 and Appendix A. The matrix equations
which solve the nodal values of a and T are mentioned in Eq. (2.14),
Since the adjoint variables of Egs. (3.12) - (3.13) form an "adjoint”
diffusion-reaction system similar to the original one, the same
numerical scheme used to solve the state variables a« and T can be
extended here to compute the adjoint variables s and A. For instance,
using the shape functions of aand T din Egs. (2.9) and (2.11) to
interpolate the adjoint variables A and s obtains the following matrix

equations for nodal values of A and s.

T T T

pclc] & = kKA - Q+ 2T 1) =217 p o, (3.19)
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*

M S =R (3.20)

with proper boundary and terminal conditions, The Q*and B* in the above
equations have definitions similar to their counterparts of Eqs. (A.17)
and (A.18) defined in Appendix A.

In general, the adjoint equations can not be solved simultaneously
with the original system equations. Because of the terminal conditions,
the adjoint equations can be solved by either the backward integration
along the real time t - axis directly or the forward integration along
the artificial time t= - axis, provided that the independent variable t
is changed to t as tt =1 -t However, both approaches require the

solutions of the original system equations prior to solving the adjoint

equa tions.
3.3 The Direct Differentiation Method

The direct differentiation method is an approach that takes
derivatives of differential equations with respect to a single design
variable directly.

For a given functional, Eq. (3.1), and the governing equations of
the diffusion-reaction system, Egs. (2.5) and (2.7), the direct

differentiation results in the following equations in terms of design

. ] d7 da .
derivatives T and T as:
T h h h
dT 2 daT
"= —dz - =~ — d 3.2
¢ fo [IO 2T = dz - ¢ (fo sz)(fo — dz)] dt, (3.21)




af | oan T , oy 2fda L 3f T
e A IR 2 I Y
dT
of c
c
and T
of
da df da a7 of c (3.23)

—:——+——+——.
db da db 3T db bTC db

It is assumed that T(z,b,t) and af{z,b,t) have enough regularity in
the time-spatial domain and in the design space. Thus, the order of the

differentiation is exchangeable, i.e.,

dT _ a1,
db dt °’
da 4%
db  dt °
and
a1~ »
dab T

where the subscript "b" denotes the design derivative.
Based on the same finite element discretization as used in solving
the original diffusion-reaction system discussed in Chapter 2, Egs.

(3.21) - (3.23) can be converted into a set of matrix equations

T o T 2.7, o7
by = fo (21" [C1 T, -1 PP T.) dt, (3.24)
. dfc )
pclC] Ib = - k[K] '_I'b - pc P - + Q, (3.25)
and
(M @ =R (3.26)

The construction of the above equations are discussed in Appendix B.




Note that the coefficient matrices of fb and éb in Egs. (3.25) and
(3.26) are 1identical to those of T and « defined in Egs. (2.14),
Therefore, the same numerical scheme and numerical tolerance can be
applied to solve both Egs. (2.14), (3.25) and (3.26) simultaneously for
state variables, T and a, and design derivatives, Ib and g . In this
way, the state variables and the design derivatives achieve the same
numerical accuracy, though an additional set of equations such as Egs.
(3.25) and (3.26) is needed in this approach for each design variable b.

Regarding the computational efficiency, it is worthwhile mentioning

two notes here:

1. Because the coefficient matrices of fb and éb are identical to
those of i and é, the triangular factorizations of matrices [C]
and [M]_are needed to be done only once. The calculation of
f and éb can be carried out by back substitution for éach of
the design variables.

2. Compared to the original system equations, the right side of
equations for computing Ib and LA such as Egs. (3.25) and
(3.26), may have different frequency contents. Thus, to
maintain the sa e numerical accuracy, a smaller time
step At may be required for the DE program to solve the pairs

(T, o) and (T, @) simultaneously.

Once T and Ib are available, the design derivative given in Eq.
(3.24) can be easily obtained by the numerical integration. Another

suggestion is to rewrite the integral form of Eq. (3.24) as a

differential equation of ¢ given as
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- T _2 47

T (3.27)

PP
The above -equation of ¢, can then be solved simultaneously with
equations of (T, o) and (T,, ) In this way, one extra design
derivative by for each design variable is introduced in the design
sensitivity analysis. However, the accuracy of ¢b is secured. Equation

(3.27) is used in the next section and Chapter 4 to compute the ¢b'
3.4 Numerical Examples

Two examples which deal with the cure process of compression
molding are presented in this section to discuss the numerical accuracy
of the adjoint variable method and the direct differentiation method for
calculating the thermal design derivatives. The accuracy of the thermal
design sensitivity analysis can be checked by usiné the fundamental
definition of design derivatives which can be approximated by the finite
difference. In other words, it is mathematically true for a small

perturbation of design variable Ab that

o8

= A
KE.

The finite perturbation of the design variable Ab is defined as the
difference between a perturbed design b* and the nominal design b, i.e.,

*

Ab=b - bh. As a result, it follows that

*
Ay = (b ) = ¢(b)

n

¢~ Ab, (3.28)
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The above equation provides a simple means to check the accuracy of the
design sensitivity analysis. Nevertheless, the difficulty of this
method is the selection of Ab., If Ab is too large, the approximation in
Eq. (3.28) is not valid. On the other hand, if Ab is too small, the
round-off error in the computation of [¢(b*) - ¢(b)] becomes too large
to apply the approximation of Eq. (3.28) for the sensitivity
calculation., In the following examples, several values of Ab are used
to check the accuracy of the design sensitivity analysis in order to
ensure the quality of the approximation given in Eq. (3.28).

The first example presented here deals with the cure process Egs.
(2.14) in which the cure temperature of the process is assumed to be a
constant temperature. The nominal cure temperature is taken as
423°K. According to the approximation defined in Eq. (3.28), the
results shown in Fig. 3.1 demonstrate that the thermal design
sensitivity calculated by the direct differentiation method 1is more
accurate than the results calculated by the adjoint variable method.
Moreover, by using the direct differentiation method, one can also get
the time histories of the design derivatives of state variables as shown
in Figs. 3.2 and 3.3.

The second example deals with the same cure process as example
one, However, the profile of the cure temperature is assumed to be the
same as the one given in Fig. 3.4 where the heating rate is considered
as a design variable. The nominal value of the heating rate is taken as
4,0°K/sec. The results of thermal design sensitivity analyses are shown
in Fig. 3.5, The time histories of the design derivatives are shown in

Figs. 3.6 and 3.7.
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From the above two examples, it 1is obvious that the direct
differentiation method provides more accurate results than the adjoint
variable method does. The direct differentiation method also yields the
time histories of the design derivatives. In addition, the information
of design derivatives of the pointwise constraints can be obtained by
using the direct differentiation method without extra cost.

Based on the numerical study, it 1is concluded that the direct
differentiation method is superior to the adjoint variable technique in

terms of accuracy and physical interpretation of results. In the next

- chapter, the thermal design sensitivity is to be calculated by using the

direct differentiation method.
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CHAPTER IV
OPTIMAL CURE CYCLE DESIGN

At the present time, the cure cycle is generally selected by the
method of parametric study conducted by either physical experiments or
numerical simulation [1]. This "trial and error" type of approach may
be costly and inefficient. Therefore, the development of a unified and
systematical approach to design the "best" cure cycle for a given
composite material is needed.

The optimal design of cure cycles studied here are to find the
optimal cure temperafure during the cure process to have the
thermosetting resin cured as uniformly as possible and to assume the
resin completely cured at the end of the cure process.

Numerical results presented in this chapter have been obtained by a
recursive quadratic programming algorithm with an active set strategy,
called a linearization method [13]. The main reason to use this
linearization method 1is that it has been proved to be globally
convergent. The linearization method, with its active set strategy,
minimizes the number of constraints which must be considered in each
design iteration. The detailed derivation of this algorithm can be
found in reference [13,14]. The concept of this algorithm is that,
rather than directly solving the optimal criteria, a small perturbation
for each design variable is determined in each iteration to reduce the

objective function and correct the violation. Note that, in this
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approach, the reduction of the objective function and the correction of
the constraint violations are approximated by the design gradients. In
general, whenever, the objective function can not be reduced further by
changing the design variables and all constraints are satisfied, it is
indicated that the linearization method is converged and the optimal
solution is obtained. In this algorithm, however, it has been proved

2 norm of the

[15] that a local optimal solution is found when the 2
perturbation of design variables approaches to zero. The complete flow
chart of this algorithm is listed in Fig. 4.1. As shown in the figure,
the proposed CAD method consists of three uncoupled modules: namely,
optimization, analysis, and sensitivity calculation. Once the analysis
capability of any cure process is established, the optimization and
sensitivity calculation modules can be added onto it to constitute a
unified CAD method and to generate an optimal cure cycle
systematically. In this thesis a well documented DE program is used for

the numerical integration of state equations and equations of thermal

design derivatives.
4,1 Problem Statement

As mentioned, optimal design techniques have been successfully
applied to various transient problems. In general, an optimal design
problem consists of design variables, the objective, constraint
functions, and state equations which describe the physical model of
interest.

In our study, the process of interest is a compression molding of a
filled polyester resin reinforced by chopped glass fibers SMC [2]. The

state equations are Tlimited to a heat conduction equation and an
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empirical equation which addresses the chemical-kinetic reaction of
resin,

Since this study excludes the resin flow and the effects of the
pressure cyé]e, the selection of the cure temperature is then limited to
the following considerations:

a) The maximum temperature inside the composite during the cure
process can not exceed a value of 500°K in this study.

b) At the end of the cure process, the material 1is cured
completely. Mathematically, the degree of cure is required to
be at least 0.85 when the cure process is completed.

c) The material 1is cured uniformly at any time during the cure
process.

The first two requirements may be formulated as constraints
g : T(t) < 500 °K, 0<t<T, (4.1)
¢2 : aft) > 0.85 (4.2)

where © is the operational period of the cure process. The t is not
considered as a design variable in this study. The last requirement can
be met by formulating it as the objective function of the optimal
design., Since the degree of cure is a function of temperature, the
uniform distribution of temperature across the thickness of the material
implies the cure uniformity. The objective of the optimal design may
then be set to achieve the temperature uniformity across the section of
the material during the cure process. The objective function ¢o is then
defined as the greatest value of the standard derivation of temperature

distribution which happens during the cure process
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4o(Tst) = Maximum Uh 124z - (fh sz)z/h]. (4.3)
O<t< 0 o)

The minimum of the objective function, ¢b(Tc’t) = 0, corresponds to
a uniform temperature distribution inside the composite at any time
during the cure process. Consequently, a uniform cure state can be
accomplished during the complete duration of the cure process.

To sum up, the optimal cure cycle design is defined as follows:

"The optimal cure temperature (temperature profile) is designed,
subject to the limitations regarding the maximum temperature and the
state of cure, so as to achieve a uniform temperature distribution along
the cross section of the material at any time during the cure process."

The mathematical formulation of the stated optimal design problem
is a mimimax problem given as

o . h 2 h 2
Minimize Maximum [/ T%dz - (J Tdz)“/h]
T (t)  O<t<s 0 0
subject to the constraints stated in Egs. (4.1) - (4.2) where the
temperature T(t) and the degree of cure a(t) are the solutions of state
equations.

It is known that the objective function of a minimax problem is
discontinuous in the design space [16]. To avoid the computational
difficulty, one may modify the optimal design problem to a standard form
by introducing an extra design variable b and an additional constraint
¢3 as

Minimize by = b
To(t), b

subject to

¢1 : T(t) < 500 °K, 0<t<, (4.4)
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¢2 : al(x) > 0.85 (4.5)

h > h_ 2
¢y 0 [f Todz - (/] Tdz)/h] <b, 0<t<r. (4.6)
0 o}
The design function T.(t) can now be parametrized by a linear
combination of design parameters and given functions such as
ND *
Tc(t) =§ bs Nj (t)

x*
where ND is the total number of design variables, b;, and Ni(t) are any

-i’
independent functions, In this presentation, the design function is

simply represented by a combination of linear polynomials and sinusoids

Tc(t) = T0 + blt + bzsin(nt/r) + b3sin(2wt/r) +

b4sin(3nt/r), ' (4.7)

where To is the room temperature and b;, by, b3, and Dby are to be
determined by the optimal design algorithm, As a result, the design
space becomes finite dimensional, and the design sensitivity (or
gradient) of temperature T(t) and state of cure a(t) are taken as
derivatives with respect to design parameters b;, by, D3, and by. For
example, the design derivatives of constraint functions, Eqs. (4.4) -

(4.6), can be derived as

3¢
1 _ ,3T(t)
6¢2 _ (da(T)
v (—p— /0.85, (4.9)
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and

h
d¢ h h
2 aT dT
- =3 iy 7 T dz - (f Tdz)([ P dz)/h]. (4.10)
1 0 1 0 0 1

It is obvious that the design sensitivities of %%— and %%— are needed
i i

for the calculation of the above function gradients. Note that the
pointwise constraints, ¢1 and ¢3, are imposed at every time grid point
in this study. The optimal cure cycle Tc(t) of the above problem can be
found numerically by calculating the thermal sensitivity analysis and by
using a gradient-based mathematical programming technique. As discussed
in the last chapter, the direct differentiation method is employed

hereafter to compute the required thermal design derivatives.
4,2 Numerical Examples

To show the applicability of the proposed CAD scheme for the
optimal cure cycle design, four examples associated with various problem

formulations are discussed and presented in this section.

Example 1.

The objective function by defined by Eq. (4.3) is minimized to find
an optimal cure cycle design for processing a chopped glass fibers SMC
with 10 mm in thickness. The total processing time is limited to 100
seconds. The maximum temperature allowed inside the SMC 1is 500°K; and
the degree of cure a is required to reach at least 0.85 at the end of
the cure process.

The physical and kinetic properties of the SMC material are given
in Table 2.1 [2]. It requires 22 iterations of the algorithm to obtain

the optimal solution for this case. Numerical results for the optimal
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design are listed in Table 4.1. Figure 4.2 shows the cure temperatures
computed at iterations 1, 11, and 22, respectively. It should be noted
that the cure cycles designed in this example are always made to start
from room temperature which is different from the common practice with
pre-warmed press platens employed in the compression molding process.
The initial cure temperature (iteration 1) has a peak and a valley at
around 20 and 60 seconds, respectively. Among the iterations (1, 11,
and 22) the initial heating rates are seen to decrease gradually;
eventually a single peak near 70 seconds is obtained for the optimal
solution. The values of the objective functions (¢o computed during
iterations) are shown in Fig. 4.3. The optimal cure cycle indeed
delivers a more uniformly distributed temperature. The optimal solution
has reduced the maximal value of temperature deviation from 2,700 to 378
units.

Temperature distributions across the thickness of the SMC at
selected instants of 20, 60, and 100 seconds during the cure process are
compared for iterations 1, 11, and 22, shown in Fig. 4.4a, b, and c,
respectively. As noted previously in Fig. 4.2, the low initial heating
rate helps the optimal cure cycle (iteration 22) achieve a more uniform
temperature distribution at the early 20 seconds into the cure
process. At the 60 seconds into the cure process, the cure cycle of the
eleventh iteration obtains a better distribution profile as seen in Fig.
4.4b, This is also a direct consequence of the negative heating rates
(cooling) between 30 to 50 seconds observed from Fig. 4.2. On the other
hand, the high initial heating rate provided by the cure cycle of
iteration 1 has strongly triggered the kinetic reaction in the first 20

seconds into the cure process. Consequently, a highly non-uniform
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temperature is observed between 30 to 50 seconds, even though the cure
cycle of iteration 1 possesses the steepest cooling rate within the same
time interval among all of the cure cycles shown in Fig. 4.4. In other
words, the heat change caused by the steepest cooling rate needs enough
time to be diffused into the material in order to offset the extra heat
generated by chemical reactions between 30 to 50 seconds. It is,
therefore, expected that, as shown in Fig. 4.4c, the more uniform
temperature distribution can be achieved by the cure cycle of iteration
1 at the latter stage of the cure process.

The distributions of the states of cure a across the SMC thickness
are shown in Figs. 4.5, 4.6, and 4.7 for the cure cycles of iterations
1, 11, and 22, respectively. In all cases, the cure of the resin starts
from the surface regime and extends into the core of SMC. The cure
cycle of iteration 1 requires the shortest time (60 seconds) to complete
the cure reaction of the material with a > 0.85.

The low cure temperatures provided by the optimal cure cycle at the
intial 40 seconds into the cure process can hardly trigger the chemo-
kinetic reactions of the resin matrix as seen from Fig. 4.7. However,
for the optimal cure cycle, the rate of the cure process speeds up in
the next 40 seconds and eventually the degree of cure exceeds the 0.85

1imit throughout the SMC material at the end of the cure cycle.

Example 2.

This is identical to the problem stated in Example 1 except that
the total processing time is extended to 150 seconds.

The optimal cure cycle of Example 1 is used as the initial trial
cure cycle studied here. The algorithm needs another 25 ijterations to

reach the optimal solution for this problem. Table 4.2 1lists the
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numerical results for the optimal design. The optimal cure cycles of
Examples 1 (iteration 1) and 2 (iteration 25) are compared in Fig.
4.8, It is noted that the cure cycle of Example 2 possesses even slower
initial heating rates, and the cooling period is no longer needed over
the entire cure cycle. The values of the objective functions are also
compared in Fig. 4.9 as indicated by a drop of maximum temperature
deviation from 250 to 110 units, the extension of the total processing
time enables an optimally designed cure cycle to achieve better
temperature uniformity during the cure process. Such improvement is
also magnified in Fig. 4.10 where temperature distributions across the
SMC thickness at selected instants during the cure process for the above
two cure cycles are compared. The distribution of the state of cure for
the optimal cure cycle of this example is shown in Fig. 4.11. The cure
behavior basically shows the same characteristics as the optimal

solution of Example 1.

Example 3.

This is identical to the problem stated in Example 1, except that
the maximum cure state deviations defined by a new objective function
(Eq. 4.11) 1is minimized; and the total processing time is extended to
150 seconds.

The goal of present cure cycle design is to have the thick
composite SMC cured uniformly. It is rationalized that perfectly
uniform temperature distribution across the SMC thickness all the time
during the cure process will secure such an objective. However, as
shown by the previous two examples, the optimal cure cycle of Example 2
does not establish significantly uniform states of cure, even though the

temperature uniformity (as indicated by the objective functions ¢o) has
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been improved greatly. This could be due to the fact that the degree of
cure is quite sensitive to the temperature non-uniformity. In this
example, the objective function Eq. (4.3) and the constraint Eq. (4.6)

are replaced by the following forms, respectively;

L h 2
¢ : Maximum [/ a®dz - (/] «dz)“/h], (4.11)
0 0 0
h > h 2
by 2 [f o dz = ([ adz)/h] <b, 0<t<t, (4.12)
3 0 (o]

The optimal cure cycle of Example 2 is used as the initial trial
solution in this case. Fifty five more iterations are required to have
the algorithm converged to the optimal solution. The optimal cure cycle
shown in Fig. 4.12 has the characteristic of a ramp-hold-ramp feature.
Numerical results are listed in Table 4.3. The values of the objective
functions of Eq. (4.11) for the starting and the optimal cure cycles are
compared in Fig. 4.13. The optimal solution reduces the maximal value
of the state of cure deviation as expected. However, the differences
are not at all significant. The distribution of the state of cure,
shown in Fig. 4.4, corresponding to the optimal cure cycle of Example 3,
is similar to that of Example 2. The temperature distribution under the
optimal cure cycle in this example is also shown in Fig., 4.15. These
results indicate that the change of the objective function from Eq.
(4.3) to Eq. (4.11) has only minor effects on the uniformity of the

state of cure, even though the profiles of the optimal cure cycle

designs are quite different.
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Example 4.

This is identical to the problem stated in Example 1, except that
the maximum state of cure deviation defined by a new objective function
(Eq. 4.13) 1is minimized; the total processing time is allowed for 150
seconds and the initial cure temperéture is regarded as an additional
design variable.

In this example, the objective function Eq. (4.3) and the

constraint Eq. (4.6) are replaced by the following forms, respectively;

¢ : Maximum {a _-a ), (4.13)
0 0<t<t 0 ¢
$a: (o -a )2 <b 0<t<t (4.14)
3 o ¢ ’ * ’

In this example, the objective function becomes the difference of
the degree of cure between the outer surface, s and the center plane,
.. The optimal design algorithm does not really achieve
convergence. However, after the forty-sixth iteration, the changes of
the design variables become small, compared to the magnitudes of the
design variables and all the constraints are satisfied. The feasible
design of the forty-sixth iteration 1is then regarded as the final
design. Numerical results of this example are listed in Table 4.4, The
cure temperature profiles and the values of the objective function of
Eq. (4.13) for iterations 1, 46, and that of reference [2] are shown in
Figs. 4.16 and 4.17, respectively. Note that the cure cycle given in
reference [2] is a constant temperature profile with T. = 423°K. The
cure temperature profile of the forty-sixth iteration has the
characteristic of a ramp-hold-ramp feature similar to that of Example

3. It is recognized that the high onset cure temperature of the optimal




cure cycle benefits the cure cycle design by initiating the chemical
reaction as quick as possible so as to achieve a better state of cure
distribution. Similar to the previous case, the final solution of this
example does improve the uniformity of the state of cure, though this
improvement 1is insignificant, The final results of the temperature
distribution and the degree of cure distribution at the selected

instants are shown in Figs. 4.18 and 4.19, respectively.
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CHAPTER V

CONCLUDING REMARKS

At the present time, the cure cycle is generally selected by the
method of parametric study conducted by either physical experiments or
numerical simulation. This type of approach may be costly and
inefficient., Therefore, the development of a unified and systematica)
approach to design the best cure cycle for a given composite material is
needed. A unified Computer-Aided Design method is introduced in this
thesis to design the best cure cycle for a resin-fiber composite
laminate. The characteristics of curing the resin-fiber composite
laminate can be simplified as a diffusion-reaction system and a kinetic
model of the cure rate of the resin. The proposed CAD method consists
of three wuncoupled modules: namely, optimization, analysis, and
sensitivity calculation. Once the analysis capability of any cure
process analysis is established, the optimization and sensitivity
calculation modules can be added onto it to constitute a unified CAD
method and to generate the optimal cure cycle systematically.

The optimal cure temperature is required to achieve the following:

1. The maximum temperature during cure should be less than 500°K.
2. At the end of the cure process, the cure of the resin should be

completed.
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3. The state of cure should be uniform during the cure process.

It is shown by numerical examples that this method performs satisfac-
torily by carefully selecting the optimization formulation.

The finite element discretization is employed to convert the
initial-boundary value problem of interest into a set of first order
differential equations. These equations are then solved simultaneously
by a numerical code called DE. The finite element method provides a
systematical method to analyze the temperature and the degree of cure
distribution. Note that very good agreements exist between the finite
element solutions and the existing solutions.

Two methods, the adjoint variable technique and the direct
differentiation method, are studied for the thermal design sensitivity
analysis. In general, the adjoint equations can not be solved
simultaneously with the original system equations. Therefore, it is
difficult for the adjoint variable technique to have the numerical
accuracy of the design derivatives equal to that of the state
variables. Numerical examples indicate that the direct differentiation
method 1is superior to the adjoint variable technique in terms of
accuracy and physical interpretation, In this thesis, the direct
differentiation method is used for the optimization algorithm,

The optimization algorithm used in this thesis is a recursive
quadratic programming algorithm with an active set strategy, called a
linearization method. The main reason to use this linearization method
is that it has been proved to be globally convergent. The optimal
design of the cure cycles studied in this thesis is to find the optimal

cure temperature during the cure process to have the thermosetting resin



cured as uniformly as possible and to secure the cure completeness of
the resin at the end of the cure process.

Four optimal design formulations for the optimal cure cycle design
of chopped-fiber SMC are studied. The first example deals with the
minimum temperature deviation across the thickness during the cure
process, and the total process time is 100 seconds. The optimal cure
cycle of this example reduces the value of the objective function from
the initial design 2,700 to the optimal one 378 units. The second
example deals with the same conditions as Example 1 except that the
total processing time is extended to 150 seconds. Using the optimal
solution of Example 1 as the initial design, the maximum temperature
deviation drops from 250 to 110 units. The third example is identical
to Example 1, except that the objective function is changed to minimize
the degree of cure deviation across the thickness along the cure process
and that the total processing time is 150 seconds. The optimal solution
reduces the value of the objective function from the initial design
0.04691 to the optimal one 0.03385. The last example deals with the
minimization of the difference between the degree of cure of the outer
surface and the center plane. The total processing time is 150 seconds
and the initial cure temperature is regarded as an additional design
variable. This example is different from the previous examples in which
the initial temperatures are set to be the room temperature. The
optimal cure cycle reduces the degree of cure deviation between the
outer surface and the center plane from the initial design 0.8032 to a
feasible design 0.6992, and increases the initial cure temperature to

395° K. Comparing the optimal cure cycle with that of reference [2],
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the optimal cure cycle does make the state of cure distributed more
uniformly during the cure process.

The numerical examples show that the proposed CAD approach is
valid. It does improve the degree of cure uniformity. This study also
indicates that the total processing time, the initial heating rate and
the initial cure temperature have significant effects on the cure
uniformity. Enlarging the design space by increasing the total
processing time and adding more design variables can further improve the
cure cycle design. The long CPU time is a concern in the optimization
process. To shorten the CPU time one may use other numerical
algorithms, such as an unconditional stable algorithm, which can
increase the time step, or the other kind of optimization algorithms,
such as the I-DESIGN [17], which does not need line search to accelerate
the optimization process.

The proposed CAD scheme can be extended to design an optimal cure
cycle for the autoclave processing. Note that, to design a realistic
cure process of resin-fiber composite optimally, some modification over
the presented simplified SMC model are required. For example, the flow
model, the chemo-viscosity and the heat convection should be considered
in the analytical model. The total processing time should be regarded
as a design variable to enlarge the design space. Moreover, some
experiments are necessary to verify the results of the cure cycle
designs.

In summary, it is clear and convincing that the optimization is a
very promising technique to enhance the capability of designing the
optimal cure cycle for the cure process of resin-fiber composite

laminate.
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APPENDIX A

FINITE ELEMENT MATRIX EQUATIONS
FOR A DIFFUSION-REACTION SYSTEM

The equations (2.12) - (2.13) can be rewritten here:

b4

NE i+l . .

0=35 [ (pcTu + kT?u” + chCu - pHrfu) dz, (A.1)
1 Z,

i
and

NE Zi+l |

0=z (a=f) v dz (A.2)
1 z.

1

where NE denotes the number of elements and u(z) and v(z) are the
testing functions.

According to the Galerkin method, the arbitrary interpolation
functions Nj and L defined in Eqs. (2.8) and (2.10) can be considered
as u(z) and v(z), respectively. Furthermore, the temperature and the
degree of cure can be expressed as linear combinations of interpolation
functions and the nodal values as shown in Eqs. (2.9) and (2.11). One

may then write a matrix equation for the first integral of Eq. (A.l)

defined as
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.
[ L pcT u dz
z,
! ;
L
i T -
=[ pc NN dz T, j=1,2,3,4. (A.3)
o

where z denotes the global coordinate system, z denotes the local

coordinate system, z = z-zi, and li = Zi+1-zi' Let a vector C be
defined as
L,
T T -
C =/ NN dz, i=1,2,3,4.
J o !
Consequently, one has
Zi+1
[ oc T u dz
Z.
j
=pc gT T (A.4)
J

for j =1 to 4. At this moment, one may introduce an element

matrix [C]' in the following way:

. 1
tel' = N oaz

where the vector C 1is defined in Eq. (A.4). It is understood that
. J
[C]1 is symmetric. Thus, for u = Nj with j =1 to 4, one has




f pcT u dz

I —e

= oc [c]' (A.5)

[k1' and a vector 21:

. 1
k1’ = [ N N-T oz, (A.6)
0
and
L.
. 1 -
Pl =/ Ndz (A.7)
0

one obtains matrix equations for the second and third integrals of Eq.

(A.1) as
Zi+1
/ kT* u’ dz
Z.
1
=k [KI' T (A.8)
anq
i+l .
J oC Tc u dz
z,.
k]
i .
=pcP T. (A.9)
- C

The element matrices [K]’, (c1? and 21 can be expressed explicitly in

terms of the length of element i, li, as follows:

Similarly, using the following definitions for an element matrix
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f 6 1 6 -1 ]
5. 10 5L, 10
i i I
. 24, 2. f
i o_ i 1 1
6 1
S_ym. ST; 0
2.
;
\ 15 J
[ 156 228, 54 131,
eyl = 222 131, -342 (A.11)
9. 1 1 1
1
120
Sym. 156 -221?
2
| 425 |
and
i 2 2 T
Po={n /2, 112, 2.2, -2./12} (A.12)

Following the previous derivation, for v = Lj with j = 1, 2, one

may write a matrix equation for the first integral of Eq. (A.2) as

Zi+l |
J av dz

=/ L.L dz a (A.13)




where Lj is a shape function for the degree of cure, Let an element

matrix [M]1 be defined as

' =)L L' dz. (A.14)

Thus, for v = Lj with j=1, 2, one has the following identity:

Zisl |
/ av dz

Z.
1

= M1 g (A.15)

The matrix [M] for the ith element can be derived explicitly in terms of
15 as

2.3 2,/6 ]
' - | (A.16)
2,76 2./3 |.

After substituting an interpolation function for the trial function

u{(z), the last term in Eq. (A.l) yields a scalar Qip for ith element as

2

0, = fo pHrf (a,T,T0) N (2) dz, p = 1,2,3,4. (A.17)

In a similar fashion, the discretized form of the last term in Eq. (A.2)

can be expressed as

L.
] -
Riq = jo f(a,T,TC) Lq(z) dz, q

1,2. (A.18)
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The cure rate a = fla,T,Tc) in Qip and Riq is a function of the
temperature and the degree of cure defined in Eq. (2.5). Note that the
temperature distribution has been replaced by T+T.. Thus, Eq. (2.5)

becomes

R
1

= f(a,T,TC)

~-d -d
1/R(T+T ) 2/R(T+T )
(ae €y a e ©aM(1-a)". (A.19)

Within the 1ith element, i.e., z; <z < 2z, the distributions of

i+l
temperature is interpolated by shape functions and nodal variables as
defined in Eq. (2.9). To abbreviate the notations, the following T is

introduced:

—
"

T(z,t) + Tc(t)

T+ Tc(t) (A.20)

It is also understood that

alz,t) = L o (A.21)
Hence, Qip and Riq can be expressed as
L. -d -d
Q. = pHr | Ya, e 1/Rr + a,e 2/RT ™) (1-a)"N (z)dz, p =1,2,3,4.
ip o I 2 p
and
L.
i -d -d
_ 1/RT 2/RT my,,__\n = -
Riq = fo (aje + ae «)(l-a) Lq(z)dz, q=1,2




where Qip and Riq are components of a 4 x 1 load vector Q and a 2 x 1
load vector R, respectively. Note that it is difficult to evaluate the
above equations analytically because of the complexity. However, using
Eqs. (A.20) - (A.21), the Qip and Riq can be computed numerically
provided that the nodal values of T and a are known. The numerical
examples represented in Section 2.3 are solved by using the Simpson's
rule for this numerical integration. The element matrix equations of

Eqs. (A.1) and (A.2) for the ith element can then be shown as

pctc)’ T+ kiKY’ T T =0, (A.22)

—
+

e
O
©

IRe
[}
ol
-k
-

[MJi (A.23)

Finally, these element matrix equations can be assembled into a set

of global system equations in a matrix form as

pclC1 T+ KIKI T+ pc P T =0 (A.24)

[Mla = R (A.25)
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APPENDIX B

FINITE ELEMENT MATRIX EQUATIONS
OF THERMAL DESIGN SENSITIVITY ANALYSIS
BY USING THE DIRECT DIFFERENTIATION METHOD

The given equation (A.19) can be rewritten here:

@ = f(a,T,Tc)

-d -d
1/R(T+T ) 2/R(T+T )
= (aje ¢ . a,e © dM(1-a)". (B.1)

Following the definition of the direct differentiation method, one

takes derivatives of the above differential equation with respect to a

single design variable directly to obtain

da _ df
db ~ db
of da df dT  of dTC
T e et e b —, (B.2)
da db T db bTC db

Since f is an explicit function of a, T, and Tcs one can find
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-d -d
1/R(T+T ) 2/R(T+T )
of _ _ c C’ Myrq_.yn-1
3 = n(ale. *ta,e « )(1-a)
-dZ/R(T+Tc) m-1 n
+ maye a (l1-a) (B.3)
and
-d -d
1/R(T+T ) 2/R(T+T )
af 1 c m n
37 = — (aldle + a2d2e a )(1-a)
R(T+T ) ,
c
_ of
aT
c

the equations (3.22) and 3.23) can be rewritten here as

of of of
— — + —
toeHr 5 @ toeHr o7 T+ efir o7 _ Tep?

—fe
|

T2 = ot
pc c

pC b = KTE (B.5)

b
and
. df of af

% 3% T’ ETCch’

(B.6)

It is assumed that Ty(z,b,t) and ab(z,b,t) have the same regularity
as T(z,b,t) and al(z,b,t). Thus, the shape functions of T(z,b,t) and
a(z,b,t) can be employed here to interpolate the Ty(z,b,t) and

a(z,b,t), i.e.

2,b,t) = N (2) T (8.7)

Tb( - _b’

]

and

ay(z,b,1) = LT(2) g . (B.8)

where N(z) and L(z) are defined in Eqgs. (2.8) and (2.10), and I, and

@, are the vectors of nodal values of T,(z,b,t) and ab(z,b,t).
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Based on the same derivation discussed in Appendix A, the global

ma trix equations for Egs. (B.5) and (B.6) can be shown as

L] + L ] - - .
pc [C] Ib k[K] Ib + pc P ch Q, (B.9)
and

Ml g =R (8.10)

where matrices [C], [K], [M], and P are the same as those given in Egs.
(A.10)-(A.13) and (A.16), and the components of Q and R for the ith

element are evaluated as

2.
1
= . of af df -
= —at =T+ —= = 4. (B.1
Qip pHr fo (aa ot = T T ch)Np(z)dz, p=1,2,3 (B.11)
and
o
= af df df -
= — + —_— [ J— = . .
Riq fo (aa @t o= Tb aTc ch)Lq(z)dz, q=1,2 (8.12)

The N(z) and L(z) in the above equations are the shape functions which
interpolate the design derivatives of the temperature and the state of
cure, respectively. Note that it is difficult to calculate Egs. (B.11)-
(B.12) analytically because of complexity. However, the Qip and ﬁiq
can be computed numerically provided that the nodal values of T, a, Ib’
and ®, are known,
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Table 2.1 Material Properties

o = 1900 kg m™>

¢ =1.03q 1kt

k =0.53Wm Lkl

a; = 4.9 x 1014 sec”!

a, = 6.2 x 10° sec”!

d; = 140 kJ mole™!

dy = 51 kJ mole™!

m =1.,3

n =2,7

R =8.83138 J mole ! K71

Hr -1

84 J g




Table 4.1 Convergence History of Optimum

Design (Example 1)

Initial Value

Final Value

Design Variables:

cost function

12 norm

Computer Time
(on CDC 855)

No. of Iterations

100.
100.
100.
100.
2,700,

33.62

108,140

115.74
100.52
-5.16
6.83
378.33

0.0054

CPU sec.

22
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Table 4.2

Convergence History of Optimum

Design (Example 2)

Initial Value

Final Value

Design Variables:

cost function

12 norm

Computer Time
(on CDC 855)

No. of Iterations

115.74
100.52
-5.16
6.83
250.00
40.88

162.32
30.98
-0.18

5.00

110.86

0.0147

156,370 CPU sec.

25
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Table 4.3 Convergence History of Optimum
Design (Example 3)

Initial Value Final Value
Design Variables:

bl 162.32 200.42

by 30.98 25.04

bsy -0.18 _ 46.99

bg 5.00 - -5.28

cost function x 103 46.91 33.85

22 norm 5.29 : 0.19
Computer Time -—- 319,000 CPU sec.

(on CDC 855)

No. of Iterations -—- 55
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Table 4.4 Convergence History of Optimum

Design (Example 4)

Initial Value

Final Value

Design Variables:

To

cost function

12 norm

Computer Time
(on IBM 4381)

No. of Iterations

300.00
168.39
47.41
40.67
-0.99
0.8032
111.40

395.85
106.59
-46.92
23.42
-24.29
0.6992
4,08788

196,800 CPU sec.
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Figure 2.1 Finite Element Discretization.
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Temperature ( 0 K)

o= Data in Reference 2

=== Calculated Data

- - OU S

-
‘---

313. - 313.

297.

297.

0 2.5 5.0

Distance from Midplane (mm)

Figure 2.3 Temperature Profiles for 10-mm Thick Sheet.
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w—= Data in Reference 2

= o= Calculated Data 1.0

Degree of Cure

Distance from Midplane (mm)

Figure 2.4 C(Cure Profiles for 10-mm Thick Sheet.
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Data in Loos' Report

------ Calculated Data

523.p

473.

423.

373.
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Figure 2.5 Temperature Profile at the Center of
Laminate for Thick Section Autoclave
Cured Composite.
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Figure 3.1 Thermal Design Derivatives for Press Molding
with Respect to the Mold Temperature.
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Figure 3.4 The Cure Temperature for Compression Molding.
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Figure 3.5 Thermal Design Derivatives for Press Molding with
Respect to the Heating Rate.
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Figure 3.6 Profiles of Thermal Design Derivatives of
Temperature with Respect to the Heating Rate.
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Figure 3.7 Profiles of Thermal Design Derivatives of the State
of Cure with Respect to the Heating Rate.
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Figure 4.1 Flow Chart of the Proposed CAD Method.




80

ul

6

*aunjedadwd)] aun) ayy Jo saypjouad 1 apdwex3y z°p aunbyp4
(298) auwy)

@ o 0o & o o« & o

L WAR)[ = - —

1 WY --oeoeenee

| vojleaal]

(%) aaniesadua]
o




81

*UojIeLA3Q dunjedadwd] pasenbS-1sea 9yl SO S| p4odd T Itdwex3 g°p dunby 4

(238) awyy

0c 14 ol 0
\\\\\\\\. 0
\ n
"0
o0z |
0091
rdSN
I W1 = et —
4§~
1l WA ~eeemmene-
| W
004

uoctTielAdg @Jnmivaadwa)




82

*uopINQELIsyqg dunijeaaduwdl Jo S3|4J0dd 1 dtdwex3y p°p aanby 4

(uw) aue[dpiy woaj Idueisiq

26 (Ol = 3 (2 ®eM=2(q

" ¢ ¢ ot o g v & F 1 9

-

[

o -

@ WP —-——- -

Il WY - >=msnsee

| wReAN]

.y

08S

(3 ) @an3esadud)
L

Ilnllll




Degree of Cure

1.0 4

83

80 sec

0.9 4

0.87

0.7 -

0.6 1

C.5 4

0.4 <

0.3+

0.2

0.1+

0.0

-0.14

(¥, 2

| M Y
1 2 3

Distance from Midplane (mm)

Figure 4.5 Example 1: The Degree of Cure Distribution at

Iteration 1.
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Figure 4.6 Example 1: The Degree of Cure Distribution at
Interation 11,
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Figure 4.7 Example 1: The Degree of Cure Distribution at
Iteration 22.
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Figure 4.11 Example 2: The Degree of Cure Distribution at
Iteration 25.
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Figure 4,14 Example 3: The Degree of Cure Distribution at

Iteration 55.
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Figure 4.15 Example 3: The Temperature Distribution at
Iteration 55.
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Figure 4.18 Example 4: The degree of Cure Distribution at
Iteration 46.
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Figure 4.19 Example 4: The Temperature Distribution at

Iteration 46,




